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Abstract

We solve a problem of non-convex stochastic optimisation with help of simulated annealing of Lévy flights of a variable
stability index. The search of the ground state of an unknown potential is non-local due to big jumps of the Levy flights
process. The convergence to the ground state is fast due to a polynomial decrease rate of the temperature.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let U be a potential function in Rd having several local minima and increasing fast at infinity. We look for a
global minimum of U. Classical continuous-time simulated annealing (Boltzmann machine) (see [28,2,9,8,10])
consists in running a diffusion process
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bZ 0;zðtÞ ¼ z�
Z t

0

rU bZ 0;zðuÞ
� �

duþ
Z t

0

r̂ðuÞdW ðuÞ;

r̂ðtÞ ¼ h
lnðkþ tÞ

� �1=2

;

ð1:1Þ
where W is a standard Brownian motion, h > 0 denotes the cooling rate and k > 1 parametrises the initial tem-
perature, which equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h= lnðkÞ

p
at time t = 0. It is known that there is a critical value ĥ such that the diffu-

sion bZðtÞ converges in distribution to the global minimum of U if h > ĥ and the convergence fails otherwise.
Moreover, the critical value ĥ is the logarithmic rate of the principal non-zero eigenvalue k1(r) of a time homo-
geneous diffusion generator Arf ¼ r2

2
Df � hrU ;rf i, i.e.,
ĥ ¼ � lim
r!0

r2 ln jk1ðrÞj: ð1:2Þ
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The value of ĥ can be calculated explicitly, if one knows the heights of potential barriers between different
wells of U (see [29,30,18] for precise results). Rigorous results on optimal cooling rate in simulated annealing
algorithms can be found in [11,5,12,13].

In order to accelerate the search, Szu and Hartley in [26] suggested the so-called fast simulated annealing
(Cauchy machine), which is a combination of a classical Metropolis algorithm introduced in [20] and a con-
cept of non-local search due to the heavy-tail Cauchy visiting distribution. The authors claimed that in the
Cauchy machine the temperature can be chosen decreasing as a power of time, namely r(t) � t�1, and applied
the algorithm in image processing, see [27].

Motivated by [26], in our papers [22,21] we considered a continuous-time counterpart of the process bZ dri-
ven by Lévy flights of stability index a 2 (0,2) and temperature rðtÞ � t�h; h > 0. We discovered that such a
jump process never settles in the neighbourhood of a global minimum, but can be used to reveal a spatial
structure of the potential U. The dynamics of Lévy flights with constant small noise was studied in our pre-
vious papers [14–16].

In the present paper we solve the problem of global optimisation with help of state-dependent Lévy flights in
a multi-well potential U. We show, that in certain annealing regimes, the global minimum is localised always,
as in the classical Gaussian case. For simplicity, we restrict our theoretical argument in Sections Section 2–5 to
one-dimensional potentials. However, it will be clear from the presentation, that the algorithm also works in a
multi-dimensional setting. In our numerical examples in Section 6, we compare our algorithm with related
Gaussian and Cauchy optimisation techniques in case of a two-dimensional potential with five local minima,
four-dimensional Shekel S10;4 function with ten local minima and six-dimensional Hartmann H 4;6 function
with four local minima.
2. Results on the cooled down Lévy flights

In [22,21] we considered a one-dimensional Lévy flights process in an external potential U. The process is
determined by the stochastic differential equation
ZðaÞ0;z ðtÞ ¼ z�
Z t

0

U 0 ZðaÞ0;z ðu�Þ
� �

duþ
Z t

0

dLðaÞðuÞ
ðkþ uÞh

: ð2:1Þ
We understand a Lévy flights process L(a) as a symmetric stable Lévy process with stability index a 2 (0,2),
whose marginal distributions have the Fourier transform
EeixLðaÞðtÞ ¼ e�cðaÞtjxja ; cðaÞ ¼ 2 cos
pa
2

� �
Cð�aÞ

��� ���: ð2:2Þ
Although the Fourier transform has a very simple form, we shall use another representation due to the
Lévy–Hinchin formula:
EeixLðaÞðtÞ ¼ exp t
Z

Rnf0g
eixy � 1� ixyIDðyÞ
� 	 dy

jyj1þa

 !
; ð2:3Þ
where IDðyÞ is the indicator function of the unit disk D = {y : jyj 6 1}. Note that some authors prefer to use a
different scaling of Lévy flights with c(a) ” 1 in the Fourier transform (2.2). We do not choose such a paramet-
risation in order to have a simple form of the Lévy–Hinchin formula, where the integral in the exponent is
calculated w.r.t. the measure mðdyÞ ¼ jyj�1�ady. We refer the reader to Appendix C in [6] for a discussion
on this subject.

The measure m is also called a jump measure of the Lévy process L(a). It controls the intensity and sizes of its
jumps. Indeed, let DL(a)(t) = L(a)(t) � L(a)(t�) denote the jump size of L(a) at time instance t > 0. Then the
number of jumps on the time interval (0, t] with values in a set J � R is a Poissonian random variable with
the mean tm(J) (which can be possibly zero or infinite).
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The process L(a) is a Markov process with a non-local generator
Af ðxÞ ¼
Z

Rnf0g
½f ðxþ yÞ � f ðxÞ � yf 0ðxÞIDðyÞ�

dy

jyj1þa ; ð2:4Þ
which is also referred to as a fractional Laplacian, A = �(�D)a/2.
We direct reader’s attention to the books [17,24,1,23] on a rigorous mathematical theory of Lévy processes

and stochastic differential equations. Physical results on the subject can be found in [19,4,3].
We assume that the potential U has n local minima mi and n � 1 local maxima si such that

�1 = s0 < m1 < s1 < � � � < mn < sn+1 = +1. The extrema are non-degenerate, i.e., U00(mi) > 0 and U00(si) < 0.
Moreover we demand that jU 0(x)j > jxj1+c as jxj ! +1 for some positive c.

In the small temperature limit, i.e., when k! +1 or t! +1, the process Z(a) can be seen as a random
perturbation of a deterministic dynamical system
X 0
xðtÞ ¼ x�

Z t

0

U 0 X 0
xðsÞ


 �
ds: ð2:5Þ
We denote Xi ¼ ðsi�1; siÞ; 1 6 i 6 n, the domains of attraction of the stable points mi. The positive param-
eter h is called the cooling rate and k > 0 determines the initial temperature of the system which equals to k�h

at t = 0.
Eq. (2.1) describes a non-linear dynamics of an overdamped Lévy particle, whose temperature is being

decreased at a polynomial rate as t!1. In [22,21], we discovered two cooling regimes – slow cooling
h < 1/a and fast cooling h > 1/a – in which the transitions of a particle between the wells of U have different
asymptotic properties.

Let D > 0 be a small number and let Bi = {y : jy � mij 6 D} denote a D-neighbourhood of a local minimum
mi. Consider transition times
T i
s;z ¼ inf u P s : ZðaÞs;z ðuÞ 2 [j 6¼iBj

n o
ð2:6Þ
between different neighbourhoods Bi and the corresponding transition probabilities Ps;z ZðaÞðT i;kÞ 2 Bj


 �
; i 6¼ j.

Then for h < 1/a and z 2 Bi we have:
E0;zT i

kah ! qðaÞi

h i�1

; k! þ1; ð2:7Þ

P0;z ZðaÞðT iÞ 2 Bj


 �
! qðaÞij qðaÞi

h i�1

; i 6¼ j; ð2:8Þ
where � �

qðaÞij ¼

Z
Xj

dy

jmi � yj1þa ¼
1

a
1

jsj�1 � mija
� 1

jsj � mija
��� ���; i 6¼ j;

qðaÞi ¼
Z

RnXi

dy

jmi � yj1þa ¼
X
j 6¼i

qðaÞij ¼
1

a
1

jsi�1 � mija
þ 1

jsi � mija
� �

:

ð2:9Þ
We have also shown that in the limit t! þ1; ZðaÞ0;z ðtÞ has a distribution:
pðaÞðdyÞ ¼
Xn

i¼1

pðaÞi dmiðdyÞ ð2:10Þ
where the vector pðaÞ ¼ pðaÞ1 ; . . . ; pðaÞn

� �T

, solves the equation QTpðaÞ ¼ 0;Q ¼ qðaÞij

� �n

i;j¼1
; qðaÞii ¼ �qðaÞi . It is

clearly seen, that all pðaÞi > 0 and Z(a) does not settle down near the global minimum of U. However, the values
pðaÞi , which can be estimated from the Monte Carlo simulations, reveal the spatial structure of U, e.g. the sizes
of the domains Xi.

If the cooling rate h is above the threshold 1/a, the Lévy particle Z(a) gets trapped in one of the wells and
thus the convergence fails. Consider the first exit time from the ith well
Si
s;z ¼ inf u P s : ZðaÞs;z ðuÞ 2 Xi

n o
: ð2:11Þ
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Then, for z 2 Bi; 1 6 i 6 n,
P0;zðSi <1Þ ¼ O
1

kah�1

� �
; k!1; ð2:12Þ
and consequently, E0;zS
i ¼ 1.

For practical simulations, solutions of (2.1) can be approximated by Euler approximations
zkh ¼ zðk�1Þr � U 0ðzðk�1ÞrÞr þ
lr

k

ðkþ ðk � 1ÞrÞh
; z0 ¼ z; k P 1; ð2:13Þ
with a time step r > 0 and a random input ðlr
kÞkP1. The random variables are independent identically distrib-

uted stable symmetric random variables, what follows from the independence and stationarity of increments
of L(a) and its scaling property:
lr
k ¼ LðaÞðkrÞ � LðaÞððk � 1ÞrÞ¼d LðaÞðrÞ¼d r1=aLðaÞð1Þ: ð2:14Þ
We refer the reader to the book [17] for more information on simulation and approximation of jump-dif-
fusions driven by Lévy flights.
3. Lévy flights with variable stability index (stable-like processes)

In order to take into account the energy geometry of the potential, we have to make the Lévy flights process
depend on its current position. Thus instead of Lévy flights L(a) defined in (2.2), we consider now the so-called
stable-like process H = (H(t))tP0, which is a Markov process defined by the non-local generator
Bf ðxÞ ¼
Z

Rnf0g
f ðxþ yÞ � f ðxÞ � yf 0ðxÞIDðyÞ½ � dy

jyj1þaðxÞ ; ð3:1Þ
with a function a(x) taking values in the interval (0,2). Sometimes, the notation B = �(�D)a(Æ)/2 is used. The
crucial difference between L(a) and H consists in a dependence of a stable-like jump measure
mx(dy) = jyj�1�a(x)dy on the spatial coordinate x. Thus, if H(t0) = x0, the instant jump distribution of H at time
t0 is governed by a stable measure mx0

ðdyÞ.
Of course, the dynamics of H is completely determined by a variable stability index a(x). For example, if

aðxÞ ¼ a0 2 ð0; 2Þ, then H is just a usual Lévy flights process of index a0. From now on, we assume that a(x)
takes values strictly between 0 and 2, i.e., 0 < a 6 a(x) 6 A < 2, to exclude degeneration of the jump measure.

We are going to study the dynamics of a stochastic differential equation with the driving process H, namely
Y 0;yðtÞ ¼ y �
Z t

0

U 0ðY 0;yðu�ÞÞduþ
Z t

0

dHðY 0;yðu�Þ; uÞ
ðkþ uÞh

: ð3:2Þ
For a better understanding of the process Y, it is instructive to consider a discrete time analogue of (3.2)
given by the recurrent formula:
ykr ¼ yðk�1Þr � U 0ðyðk�1ÞrÞr þ
hr

kðyðk�1ÞrÞ
ðkþ ðk � 1ÞrÞh

; k P 1: ð3:3Þ
The discrete time dynamical system (3.3) is obtained from the Euler approximation of (3.2) with the time
step r and can be used for simulations. (However, one should be careful when U 0 is not globally Lipschits.) The
random input is determined by the random variables hr

kðyÞ such that
hr
kðyÞ¼

d LðaðyÞÞðrÞ¼d r1=aðyÞLðaðyÞÞð1Þ; ð3:4Þ
where L(a(y))(1) has a standard symmetric a(y)-stable distribution with the Fourier transform (2.2).
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4. One-well dynamics: transitions and trapping

The dynamics Y of the Lévy flights with variable stability index in the force field U 0 is a result of an inter-
play of two independent effects. First, for small temperatures, i.e., when k! +1 or t! +1, Y is close to
the underlying deterministic trajectory X0. Starting from any point of Xi, it follows X0 with the same initial
point and with high probability reaches a small neighbourhood of mi in relatively short time. On the other
hand, Y tries to deviate from X0 making jumps controlled by the jump measure mx(dy). Finally, if Y is in
the well Xi, it spends most of the time in a neighbourhood of mi and thus has jumps approximately governed
by the stable jump measure mmiðdyÞ ¼ jyj�1�aðmiÞdy.

Thus, the exit time and the exit probability from the well Xi of the process Y are approximately the same as
for the process ZðaðmiÞÞ. This approximation becomes exact if we consider a piece-wise constant stability index
aðxÞ; aðxÞ ¼

Pn
i¼1aiIfx 2 Xig, 0 < ai < 2. With this choice of a(x), the process Y is just driven by the Eq. (2.1)

until it exits the well. (We skip a discussion on the behaviour of the process in the small neighbourhoods of the
saddle points.)

Let us introduce the following transition and exit times for the process Y:
si
s;y ¼ inffu P s : Y s;yðuÞ 2 [j 6¼iBjg; ð4:1Þ

ri
s;y ¼ inffu P s : Y s;yðuÞ 62 Xig: ð4:2Þ
It follows from (2.7) and (2.8), that if y 2 Bi and a(mi)h < 1, then the following relations hold as k! +1:
E0;ysi

kaðmiÞh
! qðaðmiÞÞ

i

h i�1

; ð4:3Þ

P0;yðY ðsiÞ 2 BjÞ ! qðaðmiÞÞ
ij qðaðmiÞÞ

i

h i�1

; i 6¼ j: ð4:4Þ
On the other hand, if a(mi)h > 1, the Lévy particle gets trapped in the well due to (2.12), i.e.,
P0;yðri <1Þ ¼ O
1

kaðmiÞh�1

� �
; k! þ1; ð4:5Þ
and consequently, E0;yri;k ¼ 1.
Relations 4.3,4.4 and 4.5 are crucial for our analysis.
5. Non-local random search and simulated annealing

5.1. Getting trapped in an assigned well

We demonstrate now how to drive a Lévy particle Y to an assigned well Xi, if the approximate location of
its minimum mi is known.

Indeed, the function a(x) given, the limiting dynamics of Y is determined by the values a(mi), 1 6 i 6 n and
the cooling rate h. Moreover, for our analysis we can freely choose both a(x) and h.

Let a(x) be smooth and attain its unique global maximum at mi. Then we have:
aðmiÞ > max
j 6¼i

aðmjÞ: ð5:1Þ
For instance, one can take a(x) = a + (A � a)/(1 + (x � mi)
2) for some 0 < a < A < 2. Then we can choose

h > 0, such that
aðmiÞh > 1; whereas aðmjÞh < 1 for j 6¼ i: ð5:2Þ

With this choice of parameters, as t! +1, the particle leaves any well Xj; j 6¼ i, in finite time according to

(4.3). Moreover, since all transition probabilities in (4.4) are strictly positive, the probability to enter the well
Xi after a finite number of transitions between the wells Xj; j 6¼ i, equals 1. Finally, upon entering Xi, the par-
ticle gets trapped there due to (4.5).
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5.2. Looking for the global minimum

Let M be the (unique) unknown global minimum of the potential U. To make a Lévy particle settle near M,
we have to determine the appropriate variable stability index a(x) and the cooling rate h such that
aðMÞh > 1; whereas aðmiÞh < 1;mi 6¼ M : ð5:3Þ

Let /(u) be an arbitrary smooth monotone decreasing function on R, 0 < a < /(u) < A < 2. Then we set
aðyÞ ¼ /ðUðyÞÞ: ð5:4Þ

It is clear that
aðMÞ > aðmiÞ for all mi 6¼ M ; ð5:5Þ

and we choose h to satisfy relations (5.3). The trapping of the particle near the global minimum M follows
from the argument of the preceding section.

5.3. The local minimum with maximal energy

Analogously, we can determine the coordinate of the (unique) ‘highest’ local minimum m, i.e., such that
UðmÞ ¼ max
16i6n

UðmiÞ: ð5:6Þ
In this case, we should take a(y) = w(U(y)) with an arbitrary smooth monotone increasing function w,
0 < a < /(y) < A < 2, which leads to the inequality
aðmÞ > aðmiÞ for all mi 6¼ m; ð5:7Þ

and the arguments of the previous sections justify the success of the search.

5.4. A local minimum with certain energy

Finally, we can perform a search not for the global minimum of U but for a local minimum mE satisfying
the condition U(mE) 6 E for some energy level E. In such a case we take a piece-wise constant stability index
aðyÞ ¼
A; UðyÞ 6 E;

a; UðyÞP E; 0 < a < A < 2;

�
ð5:8Þ
and a cooling rate h satisfying conditions Ah > 1 and ah < 1. Consequently, if for some i, the minimum U(mi)
lies below the threshold E, then near this minimum Y behaves like a jump-diffusion Z(A) driven by a Lévy
flights process L(A) and thus the Lévy particle gets trapped due to (4.5). If the well minimum lies above the
level E, a Lévy particle behaves like a process Z(a) and leaves this well in finite time due to relations (4.3)
and (4.4).

If there are several wells with minima below E, the Lévy particle settles down near one of them.
Running the search for decreasing energies E1 > E2 > . . . , we can also estimate the ground energy level

E* = U(M) and to determine the global minimum M. Analogously, one can determine a local minimum mE

satisfying conditions U(mE) P E or E1 6 U(mE) 6 E2.
We emphasise that the search algorithm described in this section requires no particular information about

the potential U: to determine the local minimum mE we use three numbers a, A and h, the energy level E and
values of U(x).
6. Numerical examples

6.1. Simulation of random increments

In the preceding sections we gave a theoretic justification of the search algorithm in dimension one. It is
clear that a d-dimensional case, d > 1, does not differ much. It suffices to consider isotropic (spherically
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symmetric) d-dimensional Lévy flights with a jumping measure mx(dy) = iyi�d�a(x)dy and to calculate new val-
ues of transition probabilities writing d instead of 1 in the integrals in (2.9). (Here i Æ i2 = Æ Æ , Æ æ denotes the
usual Euclidean norm in Rd .)

In this section we illustrate our optimisation method by three numerical examples. However, first it would
be helpful to give some details on computer simulation of stochastic differential equations driven by non-
Gaussian stable noises.

For our examples we consider the Euler discretisation of a d-dimensional stochastic differential
equation
Y0;yðtÞ ¼ y�
Z t

0

rUðY0;yðu�ÞÞduþ
Z t

0

dHðY0;yðu�Þ; uÞ
ðkþ uÞh

; t P 0; ð6:1Þ
i.e., we consider a d-dimensional Markov chain:
ykr ¼ yðk�1Þr �rUðyðk�1ÞrÞr þ
hr

kðyðk�1ÞrÞ
ðkþ ðk � 1ÞrÞh

; k P 1; ð6:2Þ
with the initial value y0 = y and a (small) time step r > 0.
As we have seen in Sections 2 and 3, the random vectors hr

kðyÞ have isotropic a-stable distribution, namely
hr

kðyÞ¼
d r1=aðyÞLðaðyÞÞð1Þ, where (L(a)(t))t P 0 is a d-dimensional Lévy flights process with a Fourier transform
E exp i x;LðaÞðtÞ
 �
 �

¼ e�tcða;dÞkxka ¼ exp t
Z

Rdnf0g
eihx;yi � 1� ihx; yiIDðyÞ
� 	 dy

kykdþa

 !
; x 2 Rd ;

cða; dÞ ¼ pd=2

2a

Cð� a
2
Þ

�� ��
Cðdþa

2
Þ :

ð6:3Þ
Note that cða; 1Þ ¼ cðaÞ; cðaÞ being defined in (2.2).
To simulate samples of random vectors hr

k we exploit a well-known fact that an isotropic Lévy flights pro-
cess can be obtained by a random time change (subordination) of a standard Brownian motion (see Examples
24.12 and 30.6 in [24] or Algorithm 6.10 in [7]).

More precisely, for a 2 (0,2) let S(a/2) = (S(a/2)(t))tP0 be an a/2-stable Lévy subordinator, i.e., a one-dimen-
sional positive increasing Lévy process with the Fourier transform:
E exp inSða=2ÞðtÞ

 �

¼ exp �tjnja=2 1� isgnðnÞ tan
pa
4

� �� �� �
; n 2 R: ð6:4Þ
Since S(a/2)(t) P 0 for all t P 0 it is more convenient to consider its Laplace transform:
E expð�uSða=2ÞðtÞÞ ¼ exp �t
ua=2

cos pa
4

� �
; u P 0: ð6:5Þ
Let now W be a standard d-dimensional Brownian motion, independent of S(a/2), with a characteristic
function:
E exp ihx;WðtÞið Þ ¼ exp �t
kxk2

2

 !
; x 2 Rd : ð6:6Þ
Let us consider the Brownian motion W on a random time scale determined by the increasing process S(a/2),
i.e., consider a superposition (W(S(a/2)(t)))tP0. Then it is known (see, e.g. Theorem 30.1 in [24]) that this pro-
cess is a d-dimensional Lévy process and for any l > 0 its a characteristic function is given by
E expðihx; lWðSa=2ðtÞÞiÞ ¼ exp �t
1

cos pa
4

klxk2

2

 !a=2
0@ 1A ¼ exp �t

la

2a=2 cos pa
4

kxka
 !

; x 2 Rd ; ð6:7Þ
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i.e., it is a d-dimensional Lévy flights process, maybe with a scale parameter different from those of L(a) in
(6.3). Recalling that Sða=2ÞðtÞ¼d t2=aSða=2Þð1Þ and WðtÞ¼d

ffiffi
t
p

Wð1Þ and comparing the constants in the final expo-
nents in (6.3) and (6.7) we can determine l = l(a,d), such that for any t P 0 the following equality holds:
LðaÞðtÞ¼d lða; dÞW Sða=2ÞðtÞ

 �

¼d lða; dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sða=2ÞðtÞ

q
Wð1Þ¼d lða; dÞt1=a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sða=2Þð1Þ

q
Wð1Þ;

lða; dÞ ¼ 1ffiffiffi
2
p pd=2 cos

pa
4
�

Cð� a
2
Þ

�� ��
C dþa

2


 �" #1=a

:
ð6:8Þ
Consequently, the vectors hr
kðyÞ in (6.2) have the following distribution:
hr
kðyÞ¼

d r1=aðyÞlðaðyÞ; dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sða=2Þð1Þ

q
Wð1Þ: ð6:9Þ
Thus from the computational point of view, to simulate Lévy flights increments we need a standard Gauss-
ian random vector and a standard positive a/2-stable random variable. The latter can be obtained as a func-
tion of two independent random variables V and E, where V is uniformly distributed on ð� p

2
; p

2
Þ, and E has a

standard exponential distribution, P(E > t) = e�t (e.g. see, [17, §3.5]):
Sða=2Þð1Þ¼d
sin a

2
V þ pa

4


 �
� cos 1� a

2


 �
V � pa

4


 �
cos pa

4
� cos V


 �2=a � E2=a�1
: ð6:10Þ
In our simulations we used a function gsl_ran_levy_skew from the GNU Scientific Library (GSL).

6.2. Optimisation methods

In what follows we illustrate our method by three numerical examples. We consider a five-well potential in
R2, a ten-well potential in R4 (Shekel function S10;4) and a four-well potential in R6 (Hartman function H 4;6).

For each function we apply four different optimisation methods: our stable-like simulated annealing, the
fast simulated annealing in sense of Szu and Hartley [26] with Barker’s acceptance probability, simulated
annealing obtained by solving a Gaussian SDE in sense of [2] and a Gaussian simulated annealing with
Metropolis’ acceptance probability. For the sake of exactness we give their complete description.

Our stable-like simulated annealing.We simulate a Markov chain:
ykr ¼ yðk�1Þr �rUðyðk�1ÞrÞr þ rððk � 1ÞrÞhr
kðyðk�1ÞrÞ; k P 1;

rðtÞ ¼ 1

ðkþ tÞh
;

ð6:11Þ
with random inputs hr
k generated from formula (6.9). According to the Section 5.4, the stability index takes

two values
aðyÞ ¼
A; if UðyÞ < Es;

a; if UðyÞP Es;

�
ð6:12Þ
with some energy level Es (here ‘s’ stands for success) which will be specified later and 0 < a 6 A < 2. The set
{x : U(x) 6 Es} will be the trapping domain for the Markov chain ykr.

Fast simulated annealing. The states are obtained from the relation:
ykr ¼ yðk�1Þr �rUðyðk�1ÞrÞr þ rððk � 1ÞrÞhr
k; k P 1;

rðtÞ ¼ k
1þ t

;
ð6:13Þ
where random inputs hr
k are Cauchy-distributed according to (6.9) with a(Æ) ” 1. The state ykr is accepted with

the Barker acceptance probability:
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P B ¼ 1þ exp
UðykrÞ � U yðk�1Þr

� �
rððk � 1ÞrÞ

0@ 1A24 35�1

: ð6:14Þ

Gaussian stochastic differential equation.We simulate a Markov chain with Gaussian increments:

ykr ¼ yðk�1Þr �rUðyðk�1ÞrÞr þ rððk � 1ÞrÞgr
k; k P 1;

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
lnðkþ tÞ

s
;

ð6:15Þ

where gr
k are identically distributed independent Gaussian vectors, gr

k ¼
d ffiffi

r
p

Wð1Þ.
Gaussian simulated annealing.The states are obtained from the relation (6.15). The state ykr is accepted with
the Metropolis acceptance probability
P M ¼ 1 ^ exp �
UðykrÞ � Uðyðk�1ÞrÞ

rððk � 1ÞrÞ

� �
: ð6:16Þ
Let U* denote the value of U in its global minimum and u�; u� > U �, its value in the second-deep local min-
imum. Consider the energy level:
Es ¼
U � þ u�

2
: ð6:17Þ
We say that the search on step k is successful if U(ykr) 6 Es, i.e., the observed energy value is well separated
from the second best solution.

To determine the speed and the precision of the algorithms, we choose another small energy value Ep (‘p’
stands for precision) and consider the step number
N first ¼ 2 � 106 ^minfk P 0 : UðykrÞ 6 U � þ Epg; ð6:18Þ

i.e., the first step when the minimal energy value is determined within the accuracy Ep. We bound the maximal
value of Nfirst by 2 Æ 106 to exclude very long simulation times.

To test the speed and stability of searches, we perform simulations of the Markov chains ykr, calculate the
mean time ÆNfirstæ, the number of successful searches Nk on the steps k = 5 Æ 104 and k = 5 Æ 105 and the mean
deviation Dk = U* � ÆU(ykr)æ where the average is taken over the successful searches. We make simulations for
different values of k and compare the best results.
6.3. Five-well potential in R2

To discuss the geometrical features of the searches, we start with a simple a two-dimensional potential func-
tion U given by the formula
UðyÞ ¼ 1� 1

1þ 0:05ðy2
1 þ ðy2 � 10Þ2Þ

� 1

1þ 0:05ððy1 � 10Þ2 þ y2
2Þ
� 1:5

1þ 0:03ððy1 þ 10Þ2 þ y2
2Þ

"

� 2

1þ 0:05ððy1 � 5Þ2 þ ðy2 þ 10Þ2Þ
� 1

1þ 0:1ððy1 þ 5Þ2 þ ðy2 þ 10Þ2Þ

#
ð1þ 0:0001ðy2

1 þ y2
2Þ

1:2Þ:

ð6:19Þ
The function U has five local minima. Its global minimum m� ¼ ð4:92;�9:89Þ has the energy value
U* = �1.4616, and the second-deep minimum m1 = (�9.73, �0.11) has the energy u* = �0.8532. We set
Es = �1.1574 and Ep = 0.0616. The step size is r = 0.1. The initial values y0 are uniformly distributed in
the square ½�20; 20�2. The results of simulations are presented in the tables below. On Fig. 1 we show typical
random paths (yrk) on the plain for all methods.
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Fig. 1. Typical random search paths (yk)06k6n for our stable-like simulated annealing (a), FSA (b), Gaussian SDE (c) and Gaussian
Metropolis SA (d). Thick lines denote the boundaries of the attraction domains of the dynamical system _xt ¼ �rUðxtÞ.
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k
 ÆNfirstæ
 k = 5 Æ 104
 k = 5 Æ 105
Nk
 Dk
 Nk
 Dk
Stable-like simulated annealing

a ¼ 1:1;A ¼ 1:8; h ¼ 0:75

1 Æ 102
 175 458
 61
 0.0004
 90
 0.0004

5 Æ 102
 93 273
 75
 0.0004
 96
 0.0004

1 Æ 103
 135 081
 62
 0.0004
 93
 0.0004

5 Æ 103
 148 972
 60
 0.0004
 93
 0.0004

1 Æ 104
 264 070
 47
 0.0004
 85
 0.0004
Fast simulated annealing
101
 586 029
 67
 0.0005
 69
 0.0004

5 Æ 101
 5787
 97
 0.0019
 98
 0.0006

1 Æ 102
 1887
 100
 0.0035
 100
 0.0008

5 Æ 102
 4477
 99
 0.0294
 100
 0.0038

1 Æ 103
 7552
 70
 0.0600
 100
 0.0112
Gaussian SDE

h = 3

103
 8749
 62
 0.1211
 76
 0.1086

104
 12 768
 71
 0.1170
 79
 0.1109

105
 34 961
 61
 0.1204
 81
 0.1154

106
 37 262
 66
 0.0888
 86
 0.0923
Gaussian simulated annealing
h = 3

103
 81 943
 67
 0.0786
 93
 0.0804

104
 113 516
 62
 0.0715
 94
 0.0756

105
 301 035
 44
 0.0685
 79
 0.0643

106
 573 990
 50
 0.0662
 63
 0.0633
As we see, the fast simulated annealing shows the best results in the present example. The search is very fast
and samples taken on steps k = 5 Æ 104 and k = 5 Æ 105 with high precision estimate the minimal energy. How-
ever, it is seen form Fig. 1b that the method uses the geometry of the potential not very efficiently and visits
many states away from the local minima of U.

Our algorithm estimates the ground state stably but takes essentially longer time for its first detection. Its
search paths (Fig. 1a) efficiently use the geometry of U, i.e., coming to the domain of attraction of a local
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minimum, they visit its neighbourhood and either leave it in finite time, or get trapped if the local minimum
has energy below Es.

Both Gaussian methods are characterised by relatively poor precision due to the big variance of random
increments.

6.4. Four-dimensional Shekel’s function

S10;4ðyÞ ¼ �
X10 1

;

i¼1 ci þ ky� aik2

a1 ¼ ð4:0; 4:0; 4:0; 4:0Þ; a6 ¼ ð2:0; 9:0; 2:0; 9:0Þ;
a2 ¼ ð1:0; 1:0; 1:0; 1:0Þ; a7 ¼ ð5:0; 5:0; 3:0; 3:0Þ;
a3 ¼ ð8:0; 8:0; 8:0; 8:0Þ; a8 ¼ ð8:0; 1:0; 8:0; 1:0Þ;
a4 ¼ ð6:0; 6:0; 6:0; 6:0Þ; a9 ¼ ð6:0; 2:0; 6:0; 2:0Þ;
a5 ¼ ð3:0; 7:0; 3:0; 7:0Þ; a10 ¼ ð7:0; 3:6; 7:0; 3:6Þ;
ðciÞ10

i¼1 ¼ ð0:1; 0:2; 0:2; 0:4; 0:4; 0:6; 0:3; 0:7; 0:5; 0:5Þ:

ð6:20Þ
The function S10,4 has ten local minima. Its global minimum has the energy value U* = �10.5364 and the
second-deep minimum has the energy u* = �5.1285. We set Es = �7.8560 and Ep = 0.5364. The step size is
r = 0.01. The initial values y0 are uniformly distributed in the cube ½0; 10�4. Since the gradient of S10;4 vanishes
for big values of iyi, in our simulations we consider the penalised function:
Sp
10;4ðyÞ ¼ S10;4ðyÞ þ

X4

j¼1

½ðyj � 10Þ2:2Iðyj > 10Þ þ jyjj
2:2

Iðyj < 0Þ�: ð6:21Þ
Simulation results are presented below:
k
 ÆNfirstæ
 k = 5 Æ 104
 k = 5 Æ 105
Nk
 Dk
 Nk
 Dk
Stable-like simulated annealing

a ¼ 1:2;A ¼ 1:9; h ¼ 0:6

100
 50198
 39
 0.3598
 92
 0.0887

500
 46768
 52
 0.2456
 92
 0.0866

1000
 43951
 63
 0.2072
 95
 0.0810

5000
 63960
 56
 0.0848
 95
 0.0595

10000
 77239
 53
 0.0572
 97
 0.0515
Fast simulated annealing
50
 612902
 67
 0.1385
 70
 0.0179

100
 354639
 81
 0.2499
 82
 0.0324

500
 57214
 7
 0.8834
 99
 0.1470

1000
 99846
 0
 –
 99
 0.2644

1500
 139922
 0
 –
 100
 0.4101
Gaussian SDE

h = 10

103
 37089
 1
 1.5448
 7
 1.7751

104
 26749
 10
 1.5667
 18
 1.6223

105
 24657
 52
 1.5839
 45
 1.6339

106
 26611
 59
 1.5631
 67
 1.3583

107
 53874
 54
 1.4889
 69
 1.5545

Line missing
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Gaussian simulated annealing

h = 10

103
 16889
 69
 1.4155
 79
 1.2417

104
 18722
 78
 1.2062
 90
 1.3376

105
 59266
 68
 1.0551
 89
 1.1888

106
 183003
 74
 0.9401
 84
 1.0355

107
 536875
 67
 1.1161
 72
 1.0520
For this test function, our algorithm detects the global minimum about 20% faster than other methods and
also demonstrates better precision.

6.5. Six-dimensional Hartman function

In this section we apply our algorithm to the six-dimensional Hartman function: !

H 4;6ðyÞ ¼ �

X4

i¼1

ci exp �
X6

j¼1

aijðyi � pijÞ
2
; ð6:22Þ
with 0 1

ðpijÞ

4;6
i;j¼1 ¼

0:1312 0:1696 0:5569 0:0124 0:8283 0:5886

0:2329 0:4135 0:8307 0:3736 0:1004 0:9991

0:2348 0:1451 0:3522 0:2883 0:3047 0:6650

0:4047 0:8828 0:8732 0:5743 0:1091 0:0381

BBB@ CCCA;

ðaijÞ4;6i;j¼1 ¼

10 3 17 3:5 1:7 8

0:05 10 17 0:1 8 14

3 3:5 1:7 10 17 8

17 8 0:05 10 0:1 14

0BBB@
1CCCA; ðciÞ4i¼1 ¼

1

1:2

3

3:2

0BBB@
1CCCA:

ð6:23Þ
The function H4,6 has four local minima. Its global minimum has the energy value U* = �3.3224 and
the second-deep minimum has the energy u* = �3.2032. We set Es = �3.2628 and Ep = 0.0324. The step size
is r = 0.01. The initial values y0 are uniformly distributed in the cube ½�1; 1�6. Since the gradient of H 4;6

vanishes for big values of iyi, in our simulations we consider the penalised function:
Hp
4;6ðyÞ ¼ H 4;6ðyÞ þ

1

6

X6

i¼1

ðjyij � 1Þ2:2Iðjyij > 1Þ: ð6:24Þ
4 5
k
 ÆNfirstæ
 k = 5 Æ 10
 k = 5 Æ 10
Nk
 Dk
 Nk
 Dk
Stable-like simulated annealing

a ¼ 1:5;A ¼ 1:9; h ¼ 0:6

100
 20 070
 13
 0.0295
 84
 0.0044

250
 18 492
 18
 0.0257
 84
 0.0043

500
 12 841
 43
 0.0264
 80
 0.0049

1000
 18 624
 42
 0.0155
 83
 0.0042

5000
 29 495
 73
 0.0043
 83
 0.0025
Fast simulated annealing

a ¼ 1:5;A ¼ 1:9; h ¼ 0:6

10
 1302 701
 35
 0.0044
 35
 0.0001

50
 1525 483
 17
 0.0323
 23
 0.0029

100
 1451 393
 2
 0.0428
 26
 0.0049

Line missing
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500
 1348318
 0
 –
 11
 0.0323

1000
 865728
 0
 –
 7
 0.0388
Gaussian SDE

h = 6

1000000
 360969
 0
 –
 0
 –

10000000
 191639
 0
 –
 0
 –

100000000
 597533
 0
 –
 0
 –
Gaussian simulated annealing
h = 6

10000
 668062
 0
 –
 0
 –

100000
 193789
 0
 –
 0
 –

1000000
 466592
 0
 –
 1
 0.0430
In R6, our method shows essentially better results. The success ratio of the fast simulated annealing seems
to relate to the geometric probability to jump to the domain of attraction of the global minimum. Gaussian
methods fail to converge to the global minimum due to the big values of the temperature parameter r(Æ). Mak-
ing r(Æ) smaller leads to much longer computation times.
7. Conclusion and discussion

The goal of this paper is to present and theoretically justify a new stochastic algorithm for global opti-
misation. The algorithm allows to determine a global minimum of an unknown potential U with help of
simulated annealing of non-Gaussian jump-diffusions driven by the so-called stable-like processes, or Lévy
flights with a variable stability index a(x). We have shown that choosing a(x) in an appropriate way, we
can force the Lévy particle to settle in a neighbourhood of the global maximum of U. We note, that the
non-constant behaviour of the stability index is crucial for the success of the search and a similar algo-
rithm with usual spatially homogeneous Lévy flights, i.e., when a(x) = a0, leads to quite different results,
see [21].

Our method has the following advantages in comparison with the Gaussian simulated annealing considered
in the introduction and in Section 6. First, the search of the global minimum is non-local, i.e., when the
annealed process leaves a potential well, it does not necessarily pass to one of the neighbouring wells, but with
strictly positive probability can jump to any well. Moreover, the probability to jump into the deepest well is
maximal, if this well is also spatially the biggest, which is observed in typical potential landscapes, see [25]. We
do not expect that our algorithm would effectively detect the so-called ‘golf-hole’ wells. Mean transition times
between the wells increase as a power of the large parameter k or, equivalently, the current time t. We can
easily obtain theoretic estimates for a number of transitions between the wells before settling in the deepest
well. These estimates follow from the analysis of a discrete time Markov chain with transition probabilities
pij ¼ qðaðmiÞÞ

ij ½qðaðmiÞÞ
i ��1, pii = 0.

In comparison to the Cauchy machine by Szu and Hartley, our method better uses the geometry properties
of the potential function, which is especially important in higher dimensions.

Further, we have more freedom to choose the parameters of the system. Indeed, if the values of U(mi) are
not known, there is no method which helps to determine the cooling rate h. (One has the same problem to
determine ĥ in (1.2) in Gaussian case.) However, in our algorithm, h is chosen together with a variable stability
index a(x).

Our method also allows to drive the Lévy particle into any well whose location is approximately known. We
can also determine a local minimum with energy below a certain given value. The choice of parameters in these
regimes is independent of the geometry of the potential. Such search regimes are not possible in the Gaussian
and Cauchy settings.
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Finally, the temperature decreases polynomially fast in time, i.e., �t�h and not logarithmic. Moreover,
depending on the choice of a(Æ), the we can choose h > 1, i.e., cool the system down faster than in the Cauchy
machine, what significantly increases the accuracy of empirical estimates for the local minima locations.

Although the theoretic basis for the success of the search is established, many questions are still open. For
example, we have to understand how to choose the optimal triple aðxÞ; h and k which minimises the search
time. Indeed, if mi is not a global minimum, we can reduce the life time of the particle in the neighbourhood
of mi making a(mi) small. On the other hand, in this case, the process Y will tend to make very big jumps, and
thus jump out to one of the peripheral wells. As a consequence, the search would be slow, if the global min-
imum of U is attained in one of the inner wells. Thus, the value of a(mi) should not be very small to exclude
very big jumps and should be well separated from a(M) to block trapping in the false well. The problem of
very big jumps can be also avoided by consideration of truncated Lévy flights with maximal jump size not
exceeding the size of the search domain. However, in this case the simulation of random input can be more
complicated.

Another question addresses the proper choice of a(Æ). If the stability index takes two values as in (5.8), it
could be helpful to decrease E gradually in time, or make some adaptive search, with E being dependent from
the observed energy values.

We shall address these and other questions in our further research.
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[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 93, Cambridge University
Press, Cambridge, 2004.

[2] F. Aluffi-Pentini, V. Parisi, F. Zirilli, Global optimization and stochastic differential equations, Journal of Optimization Theory and
Applications 47 (1) (1985) 1–16.
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[24] K.-I. Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, 68, Cambridge

University Press, Cambridge, 1999.
[25] J.C. Schön, Preferential trapping on energy landscapes in regions containing deep-lying minima: The reason for the success of

simulated annealing? Journal of Physics A: Mathematical and General 30 (7) (1997) 2367–2389.
[26] H. Szu, R. Hartley, Fast simulated annealing, Physics Letters A 122 (3,4) (1987) 157–162.
[27] H. Szu, Automated fault recognition by image correlation neutral network technique, IEEE Transactions on Industrial Electronics 40

(2) (1993) 197–208.
[28] D. Vanderbilt, S.G. Louie, A Monte Carlo simulated annealing approach to optimization over continuous variables, Journal of

Computational Physics 56 (1984) 259–271.
[29] A.D. Wentzell, On the asymptotic behavior of the greatest eigenvalue of a second-order elliptic differential operator with a small

parameter in the higher derivatives, Soviet Math Doklady 13 (1) (1972) 13–17.
[30] A.D. Wentzell, On the asymptotic of eigenvalues of matrices with elements of order exp{ � Vij/(2e2)}, Soviet Math Doklady 13 (1)

(1972) 65–68.


	L eacute vy flights, non-local search and simulated annealing
	Introduction
	Results on the cooled down L eacute vy flights
	L eacute vy flights with variable stability index (stable-like processes)
	One-well dynamics: transitions and trapping
	Non-local random search and simulated annealing
	Getting trapped in an assigned well
	Looking for the global minimum
	The local minimum with maximal energy
	A local minimum with certain energy

	Numerical examples
	Simulation of random increments
	Optimisation methods
	Five-well potential in  {{\open{R}}}^{2}
	Four-dimensional Shekel ' s function
	Six-dimensional Hartman function

	Conclusion and discussion
	Acknowledgments
	References


